S2 + Air Combustion: Reaction Kinetics, Flame Structure, and Laminar Flame Behavior
نویسندگان
چکیده
منابع مشابه
A New Type of Steady and Stable, Laminar, Premixed Flame in Ultra-Lean, Hydrogen-Air Combustion
Ultra-lean, hydrogen-air mixtures are found to support another kind of laminar flame that is steady and stable beside flat flames and flame balls. Direct numerical simulations are performed of flames that develop into steadily and stably propagating cells. These cells were the original meaning of the word “flamelet” when they were observed in lean flammability studies conducted early in the dev...
متن کاملInvestigation of Air Turbulence Intensity Effect on the Flame Structure in Different Flame Holder Geometry
In this paper, the effect of air turbulence intensity on the flame structure in various radii and lengths of a flame holder numerically studied. Finite volume method is used to solve the governing equations. The obtained numerical results using realizable k-ε and β-PDF models show a good agreement with the experimental data. The results show that flame holder with greater lengths yield shorter ...
متن کاملRadiation-Affected Laminar Flame Quenching
where p is the density, cp the specific heat at constant pressure, Su the laminar flame speed, Tb the flame temperature, subscript u the unburned gas and superscript 0 the adiabatic gas, ), the thermal conductivity, 7/= (rp/rR)"2 the weighted nongrayness, rp and rR being the Planck mean and the Rosseland mean of the absorption coefficient, ¢. the wall emissitivity, r = rMI the optical thickness...
متن کاملRadiation-Affected Laminar Flame Propagation
where ~ = (Kp/rR ) '~ is the weighted nongreyness, K p and r R are the Planck mean and the Rosseland mean of the absorption coefficient, r = rM6 K is optical thickness, r M = (rprR)'/~ the mean absorption, 8 K the conduction flame thickness, P = 4o TM3/(~5 K) the Planck number, T M the adiabatic flame temperature, ~ the thermal conductivity, and w the albedo, the ratio of scattering to extinction.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energy & Fuels
سال: 2018
ISSN: 0887-0624,1520-5029
DOI: 10.1021/acs.energyfuels.8b01019